You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
12345678910111213 |
- \begin{frage}[3]%% Anzahl Punkte für diese Aufgabe
-
- In einem See wird eine Algendecke von siebzehn m${}^2$ gemessen. Nach vier Tagen ist die Algendecke auf 51 m${}^2$ angewachsen. Wir gehen von einem unbegrenzten exponentiellen Zuwachs aus.
-
- Geben Sie eine mögliche Funktionsgleichung an $y=f(t)$, welche die Algendecke $y$ in m${}^2$ in Abhängikeit der Zeit $t$ in Tagen angibt.
-
- \vspace{2mm}
-
- Eine mögliche Funktionsgleichung lautet $$y = \LoesungsRaumLen{40mm}{ 17\cdot{} 3^\frac{t}{4} }$$
-
- \platzFuerBerechnungen{8}%%
- \TRAINER{}%%
- \end{frage}
|