| 1234567891011121314151617181920212223242526272829 | 
							- \begin{frage}[3]%% Anzahl Punkte für diese Aufgabe
 - 
 -   Aus einem Würfel mit Kantenlänge $a$ wird ein Keil
 -   abgeschnitten. Siehe Graphik:
 - 
 - \noTRAINER{  \bbwCenterGraphic{60mm}{geom/stereometrie/prismen/img/keil.png}}
 - \TRAINER{  \bbwCenterGraphic{30mm}{geom/stereometrie/prismen/img/keil.png}}
 - 
 -   a) Berechnen Sie das Volumen des Keils (1 Pkt).
 - 
 -   \vspace{5mm}
 - 
 -   Das Volumen des Keils (ausdegdrückt in $a$) ist
 -   \LoesungsRaumLen{50mm}{$\frac14 a^3= 0.25 a^3$}
 - \vspace{1mm}
 - \hrule
 - \vspace{1mm}
 -   b) Berechnen Sie den Oberflächeninhalt $S$ des Keils (2 Pkt) und
 -   geben Sie das Resultat exakt (Brüche, Wurzeln) an und vereinfachen
 -   Sie so weit wie möglich.
 - 
 -   \vspace{5mm}
 -   
 -   $S$ = \LoesungsRaumLen{45mm}{$\frac12 \cdot{} a^2 (4+\sqrt{5})$}
 -   
 -   \platzFuerBerechnungen{10}\\%%
 - \TRAINER{}%%
 - {\tiny{Marthaler Geometrie S. 196 Aufg. 23}}%%
 - \end{frage}%%
 
 
  |