Nav apraksta
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

Winkelhalbierende_v1.tex 992B

12345678910111213141516171819202122232425262728
  1. \begin{frage}[3]%% Anzahl Punkte für diese Aufgabe
  2. Gegeben sind die Eckpunkte eines Dreiecks: $A=(-4|-1)$, $B=(8|4)$ und
  3. $C=(-7|3)$.
  4. a) Berechnen Sie die Länge der Vektoren $\vec{a} =
  5. \overrightarrow{AB}$ und $\vec{c} = \overrightarrow{AC}$ (Resultate
  6. exakt stehen lassen --- Wurzeln, Brüche, Logarithmen):
  7. $$|\vec{a}| = \LoesungsRaumLen{40mm}{\sqrt{169}=13}$$
  8. $$|\vec{c}| = \LoesungsRaumLen{40mm}{\sqrt{25}=5}$$
  9. b) Mit welchem Faktor $t$ müssen Sie $\vec{c}$ multiplizielen, damit
  10. er gleich lang wird wie der Vektor $\vec{a}$ ? Mit anderen Worten dass
  11. gilt:
  12. $$|\vec{a}| = t\cdot{}|\vec{c}|$$
  13. $$t = \LoesungsRaumLen{30mm}{\frac{13}5 = \frac{169}5}$$
  14. c) Finden Sie einen möglichen Vektor $\vec{d} = \overrightarrow{AD}$ der den
  15. Winkel $\alpha$ (bei $A$) im Dreieck halbiert.
  16. $$\vec{d} = \overrightarrow{AD} = \LoesungsRaumLen{50mm}{\Spvek{12;5}
  17. + \frac{13}{5} \cdot{} \Spvek{4;-3}}$$
  18. \noTRAINER{\bbwGraph{-8}{9}{-2}{5}{}}
  19. \platzFuerBerechnungen{6}%%
  20. \TRAINER{}%%
  21. \end{frage}